Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13.
نویسندگان
چکیده
Lending support to the hygiene hypothesis, epidemiological studies have demonstrated that allergic disease correlates with widespread use of antibiotics and alterations in fecal microbiota ("microflora"). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators, from the microbiota. We have recently developed a mouse model of antibiotic-induced gastrointestinal microbiota disruption that is characterized by stable increases in levels of gastrointestinal enteric bacteria and Candida. Using this model, we have previously demonstrated that microbiota disruption can drive the development of a CD4 T-cell-mediated airway allergic response to mold spore challenge in immunocompetent C57BL/6 mice without previous systemic antigen priming. The studies presented here address important questions concerning the universality of the model. To investigate the role of host genetics, we tested BALB/c mice. As with C57BL/6 mice, microbiota disruption promoted the development of an allergic response in the lungs of BALB/c mice upon subsequent challenge with mold spores. In addition, this allergic response required interleukin-13 (IL-13) (the response was absent in IL-13(-/-) mice). To investigate the role of antigen, we subjected mice with disrupted microbiota to intranasal challenge with ovalbumin (OVA). In the absence of systemic priming, only mice with altered microbiota developed airway allergic responses to OVA. The studies presented here demonstrate that the effects of microbiota disruption are largely independent of host genetics and the nature of the antigen and that IL-13 is required for the airway allergic response that follows microbiota disruption.
منابع مشابه
Role of antibiotics and fungal microbiota in driving pulmonary allergic responses.
Over the past four decades, there has been a significant increase in allergy and asthma in westernized countries, which correlates with alterations in fecal microbiota (microflora) and widespread use of antibiotics (the "hygiene hypothesis"). Antibiotics also lead to overgrowth of the yeast Candida albicans, which can secrete potent prostaglandin-like immune response modulators. We have develop...
متن کاملThe 'microflora hypothesis' of allergic diseases.
Increasingly, epidemiologic and clinical data support the hypothesis that perturbations in the gastrointestinal (GI) microbiota because of antibiotic use and dietary differences in 'industrialized' countries have disrupted the normal microbiota-mediated mechanisms of immunological tolerance in the mucosa, leading to an increase in the incidence of allergic airway disease. The data supporting th...
متن کاملThe role of microbiota, probiotics and prebiotics in dermatology
Probiotics are living microorganisms that, when used adequately, have beneficial effects on the host, and their superiority is that they are safe and secure for the host. The use of probiotics in addition to the digestive tract, has been studied in immune function, skin diseases, diabetes, cancer, liver disease, hypertension, urogenital system and oral cavity. In general, probiotics seem to be ...
متن کاملCytokine and Chemokine Interactions in Allergic Airway Inflammation.
Allergic airway inflammation is characterized by peribronchial eosinophil accumulation within the submucosa surrounding the airway. The development of appropriate animal models to dissect the critical mechanisms involved in the deleterious responses is crucial for the evolution of proper therapeutic approaches. This article reviews several developed models of allergic airway inflammation induce...
متن کاملIL-13 fusion cytotoxin ameliorates chronic fungal-induced allergic airway disease in mice.
IL-13 has emerged as a major contributor to allergic and asthmatic responses, and as such it represents an attractive target in these diseases. In this study, IL-13-responsive cells in the lung were targeted via the intranasal administration of IL-13-PE38QQR (IL-13-PE), comprised of human IL-13 and a derivative of Pseudomonas exotoxin, to Aspergillus fumigatus-sensitized mice challenged with A....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 1 شماره
صفحات -
تاریخ انتشار 2005